树状数组 + 离散化
把坐标按y从小到大排序,y相同的按x从大到小排序,然后把x离散化以后用树状数组维护前缀最大值。(并不是严格的前缀最大值,对于之前树状数组中的最值,如果修改的值小于原值,仍然把原来的值当成最大值),就相当于选择了之前的点做转移。
这样保证了每次更新时,当前点一定是由左下方的矩阵转移而来。x要从小到大排序是因为保证每次更新对于y相同的点不会被其左边的点影响。
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)using namespace std;typedef long long ll;inline int lowbit(int x){ return x & (-x); }inline int read(){ int ret = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) ret = (ret << 3) + (ret << 1) + (ch ^ 48), ch = getchar(); return w ? -ret : ret;}inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }inline int lcm(int a, int b){ return a / gcd(a, b) * b; }template inline T max(T x, T y, T z){ return max(max(x, y), z); }template inline T min(T x, T y, T z){ return min(min(x, y), z); }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 200005;int _, n, tot, a[N], tree[N], ans;struct Pos{ int x, y, w; bool operator < (const Pos &rhs) const { if(y != rhs.y) return y < rhs.y; return x > rhs.x; }}pos[N];inline void add(int k, int val){ for(; k <= n; k += lowbit(k)) tree[k] = max(val, tree[k]);}inline int query(int k){ int ret = 0; for(; k; k -= lowbit(k)) ret = max(ret, tree[k]); return ret;}int main(){ for(_ = read(); _; _ --){ n = read(), ans = 0; full(a, 0), full(tree, 0); for(int i = 1; i <= n; i ++){ pos[i].x = read(), pos[i].y = read(), pos[i].w = read(); a[++tot] = pos[i].x; } sort(pos + 1, pos + n + 1); sort(a + 1, a + tot + 1); tot = unique(a + 1, a + tot + 1) - a - 1; for(int i = 1; i <= n; i ++){ int p = lower_bound(a + 1, a + tot + 1, pos[i].x) - a; int val = query(p - 1) + pos[i].w; ans = max(ans, val); add(p, val); } printf("%d\n", ans); } return 0;}